Making CN 2 - SD subgroup discovery algorithm scalable to large size data sets using instance selection q
نویسندگان
چکیده
The subgroup discovery, domain of application of CN2-SD, is defined as: ‘‘given a population of individuals and a property of those individuals, we are interested in finding a population of subgroups as large as possible and have the most unusual statistical characteristic with respect to the property of interest’’. The subgroup discovery algorithm CN2-SD, based on a separate and conquer strategy, has to face the scaling problem which appears in the evaluation of large size data sets. To avoid this problem, in this paper we propose the use of instance selection algorithms for scaling down the data sets before the subgroup discovery task. The results show that CN2-SD can be executed on large data set sizes pre-processed, maintaining and improving the quality of the subgroups discovered. 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Subgroup discover in large size data sets preprocessed using stratified instance selection for increasing the presence of minority classes
The subgroup discovery is defined as: ‘‘given a population of individuals and a property of those individuals, we are interested in finding a population of subgroups as large as possible and in having the most unusual statistical characteristic with respect to the property of interest”. The subgroup discovery algorithms have to face the scaling up problem which appears in the evaluation of larg...
متن کاملIFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF
Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...
متن کاملSubgroup Discovery with CN2-SD
This paper investigates how to adapt standard classification rule learning approaches to subgroup discovery. The goal of subgroup discovery is to find rules describing subsets of the population that are sufficiently large and statistically unusual. The paper presents a subgroup discovery algorithm, CN2-SD, developed by modifying parts of the CN2 classification rule learner: its covering algorit...
متن کاملA cross-selection instance algorithm
Motivated by the idea of cross-validation, a novel instance selection algorithm is proposed in this paper. The novelties of the proposed algorithm are that (1) it cross selects the important instances from the original data set with a committee, (2) it can deal with the problem of selecting instance from large data sets. We experimentally compared our algorithm with five state-of-the-art approa...
متن کاملAPRIORI-SD: Adapting Association Rule Learning to Subgroup Discovery
& This paper presents a subgroup discovery algorithm APRIORI-SD, developed by adapting association rule learning to subgroup discovery. The paper contributes to subgroup discovery, to a better understanding of the weighted covering algorithm, and the properties of the weighted relative accuracy heuristic by analyzing their performance in the ROC space. An experimental comparison with rule learn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008